Beyond the Scientific Method: Challenging the Myths that surround the Public Conception of Science

JONATHAN OSBORNE

ARGUMENTS ABOUT THE VALUE OF UNDERSTANDING SCIENCE

OUR PREDILECTION FOR PREMATURE ACCEPTANCE AND ASSERTION, OUR AVERSION TO SUSPENDED JUDGEMENT, ARE SIGNS THAT WE TEND NATURALLY TO CUT SHORT THE PROCESS OF TESTING. WE ARE SATISFIED WITH SUPERFICIAL AND IMMEDIATE SHORT-VISIONED APPLICATION......SCIENCE REPRESENTS THE SAFEGUARD OF THE RACE AGAINST THESE NATURAL PROPENSITIES AND THE EVILS WHICH FLOW FROM THEM......IT IS ARTIFICIAL (AN ACQUIRED ART), NOT SPONTANEOUS; LEARNED, NOT NATIVE. TO THIS FACT IS DUE THE UNIQUE, THE INVALUABLE PART OF SCIENCE IN EDUCATION.

Dewey, J. (1916). *Democracy and Education*. New York: The MacMillan Company.

THE MISAPPREHENSIONS

- **1. THE FALLACY OF TRANSFER**
- **2.** The fallacy of scientific idolatry
- **3.** THE FALLACY OF CRITICAL THINKING
- 4. THE FALLACY OF SCIENTISM
- 5. THE FALLACY OF THE SCIENTIFIC METHOD
- 6. THE FALLACY OF MISCELLANEOUS INFORMATION

Cohen, I. B. (1952). The education of the public in science. *Impact of Science on Society, 3*, 67-101.

FUNCTIONAL SCIENTIFIC LITERACY

- **1. SUBJECT MATTER KNOWLEDGE**
- 2. COLLECTING AND EVALUATING DATA
- **3. INTERPRETING DATA**
- 4. MODELING IN SCIENCE
- 5. UNCERTAINTY IN SCIENCE

6. SCIENCE COMMUNICATION IN THE PUBLIC DOMAIN

Ryder, J. (2001). Identifying science understanding for functional scientific literacy. *Studies in Science Education, 36*, 1-44.

THE RISE OF SCIENTIFIC VIGILANTES

"TAKING SCIENTIFIC QUALITY CONTROL INTO ONE'S OWN HANDS AND ATTEMPTING TO EFFECT QUALITY CONTROL ACCORDING TO ONE'S OWN UNDERSTANDING OF RIGHT AND WRONG;

ACTION TAKEN BY A VOLUNTARY GROUP OF PERSONS, SCIENTISTS OR NOT, WHO ORGANIZE THEMSELVES FOR THE PURPOSE OF PROTECTING A COMMON INTEREST, NAMELY SCIENCE; "

da Silva, J. A. T. (2016). Vigilantism in science: The need and the risks. *Academic Journal of Interdisciplinary Studies, 5*(3), 9.

MYTHS

- TODAY WE WILL EXAMINE *THE SCIENTIFIC METHOD* AS IT RELATES TO CLIMATE CHANGE
- FAR TOO OFTEN, ALARMIST THEORIES ON CLIMATE SCIENCE ORIGINATE WITH SCIENTISTS WHO OPERATE OUTSIDE OF THE PRINCIPLES OF *THE SCIENTIFIC METHOD*.
- THE SCIENTIFIC METHOD IS A SIMPLE PROCESS THAT HAS BEEN USED FOR CENTURIES
- AND IT AVOIDS SPECULATION ABOUT DISTANT EVENTS FOR WHICH THERE IS NO HARD PROOF.
- ALL TOO OFTEN, SCIENTISTS IGNORE THE BASIC TENANTS OF SCIENCE IN ORDER TO JUSTIFY THEIR CLAIMS.
- THE SCIENTIFIC METHOD IS REGARDED AS THE "FOUNDATION OF MODERN SCIENCE." IT ENSURES THAT SCIENTIFIC EXPERIMENTATION IS NEITHER ARBITRARY NOR SUBJECTIVE, AND THAT RESULTS CAN BE REPLICATED.

Opening Statement: Lamar Smith - Chair of the House Committee on Science, Space and Technology. March 29, 2017

A NARRATIVE FOR SCIENCE?

- 1. THERE ARE PLURAL METHODS AND TYPES OF REASONING WHICH REQUIRE A DIVERSE SET OF PROCEDURAL, EPISTEMIC AND ONTIC ENTITIES
- 2. OBJECTIVITY IS MAINTAINED BY PEER REVIEW AND REPLICATION
- 3. SCIENTISTS CAN MAKE MISTAKES BUT FRAUD IS RARE
- 4. SCIENCE IS ABOUT CREATING MODELS OF REALITY. THEY ARE NOT INFALLIBLE.
- 5. SCIENTIFIC BELIEFS ARE BASED ON A COMMITMENT TO EVIDENCE
- 6. THE CROWNING GLORY OF SCIENCE IS SCIENTIFIC THEORIES.

and the abstract. It would seem to me better to begin with a rabbit sitting under a raspberry bush or something of that sort, and perhaps end with an excursus into the nature and philosophy of science. I wonder if the fellows who teach biology in our country really believe the crap about "schentific method" with which they uniformly start their textbooks.

I hope to hell to getmy my present book ("The Prevalence of People") off to Scribners by June 15th. I am spending most of the summer at the Hopkins Marine Station -- I believe Prosser is their visitor for the first half of the summer, me for the second -- and I hope to spend most of my time there writing up last summer's work in the Pacific. It might also be a good chance to collect ideas about the aspects of marine biology that should go in a text. The decks should thus be fairly clear by next fall. When I was in New York the other day, I warned Scribners that I might be ratting on them for long enough to write a textbook, which they took with good grace. So I seem to be clear there too. X

I do hope we can manage at least to explore the possibilities of this project of Joe's.

With all the best,

Sincerely,

Marston Bates

Marston Bates

Sincerely,

With all the best,

OT CUTE DLOJOGC OT ADA. R.

Cognitive Historians of Science

ALISTAIR CROMBIE

IAN HACKING

REVIEL NETZ

ARNOLD DAVIDSON

NANCY NERCESSIAN

The history of science is the history of vision and **argument**

- Hypothetico-Deductive
- Inductive
- Abductive

Crombie, Alistair Cameron. (1994). *Styles of scientific thinking in the European tradition: The history of argument and explanation especially in the mathematical and biomedical sciences and arts (Vol. 1)*: Duckworth London.

Stanford University

8

Styles of Reasoning

- **1. MATHEMATICAL DEDUCTIVE LOGIC**
- **2. EXPERIMENTAL EXPLORATION**
- **3. Hypothetical Modeling**
- 4. CATEGORIZATION AND CLASSIFICATION
- 5. PROBABILISTIC AND STATISTICAL THINKING
- 6. EVOLUTIONARY/GENETIC EXPLANATION

FEATURES STYLE	Ontic Entities	Procedural Entities	Epistemic Constructs	Heroes
Mathematical Deduction	Exponents Euclidian Lines Differentials Vectors Negative Numbers	Geometry, Limits Gradients Differentials	Deductive proof	Pythagoras, Euclid, Newton, Maxwell, Einstein
Experimental Exploration	Intrumentation Thermometers Ammeters Mass Spectrometers	Independent/Dependent Variables Control of Variables	Hypothesis Observations Experimental Tests Controls/RCT testing	Galileo Toricelli Marie Curie
Hypothetical Modeling	Idealized point masses Wave model of light Atoms as Mini-Solar Systems Chemical Models	Representational Models Thought Experiments	Explanatory coherence Parsimony Representations Theory	Galileo Einstein Bohr
Categorization and Classfication	Species, Elements Periodic Table Differentiating Heat and Temperature	Criteria for Category Membership	The significance & role of classification	Linnaeus Mendelev Rumford
Probabalistic and Statistical Thinking	Gaussian Distribution P-values Statistical Significance Chi-Square	Standard Statistical Tests Data Mining	Inference to Best Possible Explanation Role of uncertainty	Pascal, Gauss, Poisson, Cronbach
On	Gene Adaptation DNA Rock Types Planets Stars	Techniques for genetic determination Computer modeling	Role of Observation and Inference	Mendel, Darwin Wegener

FEATURES STYLE	Ontic Entities	Procedural Entities	Epistemic Constructs	Heroes
Mathematical Deduction	Exponents Euclidian Lines Differentials Vectors Negative Numbers	Geometry, Limits Gradients Differentials	Deductive proof	Pythagoras, Euclid, Newton, Maxwell, Einstein
Experimental Exploration	Intrumentation Thermometers Ammeters Mass Spectrometers	Independent/De pendent Variables Control of Variables	Hypothesis Observations Experimental Tests Controls/RCT testing	Galileo Toricelli Marie Curie
Hypothetical Modeling	Idealized point masses Wave model of light Atoms as Mini-Solar Systems Chemical Models	Representational Models Thought Experiments	Explanatory coherence Parsimony Representations Theory	Galileo Einstein Bohr
Categorization and Classfication	Species, Elements Periodic Table Differentiating Heat and Temperature	Criteria for Category Membership	The significance & role of classification	Linnaeus Mendelev Rumford
Probabalistic and Statistical Thinking	Gaussian Distribution P-values Statistical Significance Chi-Sauare	Standard Statistical Tests Data Mining	Inference to Best Possible Explanation Role of uncertainty	Pascal, Gauss, Poisson, Cronbach

FEATURES STYLE	Ontic Entities	Procedural Entities	Epistemic Constructs	Heroes
Mathematical Deduction	Exponents Euclidian Lines Differentials Vectors Negative Numbers	Geometry, Limits Gradients Differentials	Deductive proof	Pythagoras, Euclid, Newton, Maxwell, Einstein
Experimental Exploration	Intrumentation Thermometers Ammeters Mass Spectrometers	Independent/Dependent Variables Control of Variables	Hypothesis Observations Experimental Tests Controls/RCT testing	Galileo Toricelli Marie Curie
Hypothetical Modeling	Idealized point masses Wave model of light Atoms as Mini-Solar Systems Chemical Models	Representational Models Thought Experiments	Explanatory coherence Parsimony Representations Theory	Galileo Einstein Bohr
Categorization and Classfication	Species, Elements Periodic Table Differentiating Heat and Temperature	Criteria for Category Membership	The significance & role of classification	Linnaeus Mendelev Rumford
Probabalistic and Statistical Thinking	Gaussian Distribution P-values Statistical Significance Chi-Square	Standard Statistical Tests Data Mining	Inference to Best Possible Explanation Role of uncertainty	Pascal, Gauss, Poisson, Cronbach
Evolutionary/Ge netic Reasoning	Gene Adaptation DNA Rock Types Planets	Techniques for genetic determination Computer	Role of Observation and Inference	Mendel, Darwin Wegener

OBJECTIVITY IN SCIENCE (WHAT ARE FACTS?)

WHY SHOULD WE TRUST SCIENTISTS CLAIMS TO KNOW? FACTS DO NOT STAND IN ISOLATION INITIAL FINDINGS ARE TENTATIVE E.G THE ELECTRON (BUT MOST SCHOOL SCIENCE IS BEYOND DOUBT) OBJECTIVITY IS MAINTAINED BY PEER REVIEW SCIENCE IS SOCIAL KNOWLEDGE

Why findings are likely not to be true

- **1. THE SAMPLE SIZES ARE SMALL**
- **2.** THE EFFECT SIZES ARE SMALL
- **3.** THERE ARE TOO MANY DIVERSE HYPOTHESES BEING TESTED IN THE DOMAIN
- 4. THERE IS TOO MUCH DIVERSITY IN THE DESIGNS IN THE AREA
- **5.** THERE ARE STRONG FINANCIAL INTERESTS OR PREJUDICES INVOLVED
- **6.** THE FIELD IS 'HOT' AND CONTESTED.

Ioannidis, I. P. A. (2005). Why Most Published Research Findings Are False. *PLos Medicine, 2*(8), e124.

TO ERR IS NORMAL

Error	Method	
Placebo Effect	Blind Clinical Trial	
Observer Effect	Double Blind	
Confounded Variables	Control of Variables	
Biased Sampling	Randomization	
Instrument Malfunction	Rigorous Calibration	
Inappropriate Inferences	Peer Review	
Gender/Cultural Bias	Communal Checks/Balances	

Allchin, D. (2012). Teaching the nature of science through scientific errors. *Science Education, 96*(5), 904-926. doi:10.1002/sce.21019

A History of Errors

TRANSMUTATION

PHLOGISTON

N RAYS

COLD FUSION

LAMARKIANISM

PTOLEMY AND THE GEOCENTRIC THEORY OF EPICYCLES

PLUM PUDDING MODEL OF THE ATOM

SPONTANEOUS GENERATION

THE ETHER

REJECTION OF CONTINENTAL DRIFT HYPOTHESIS

CALORIC THEORY OF HEAT

BIOLOGICAL JUSTIFICATION FOR RACE

THE DEMISE OF PLUTO THE PLANET

SCIENCE AS THE CONSTRUCTION OF MODELS

PHYSICAL MODELS

ANALOGICAL MODE

- ♦ WAVE/PARTICLE MODEL OF LIGHT
- ♦ MAGNETIC FIELDS
- ♦ BOHR MODEL OF THE ATOM
- ◆ PARTICLE MODEL OF MATTER
- ♦ CIRCULATORY MODEL OF BLOOD TRANSPORT

MATHEMATICAL MODELS

Goal of science is the construction of Explanatory Models

Bohr Model of the Atom

THE DISTINCTIVE FEATURE OF SCIENCE

COMMUNALISM

UNIVERSALISM

DISINTEREDNESS

ORIGINALITY

SCEPTICISM

Rationality of Science is secured by its commitment to evidence

Crazy Ideas in Science

Day and Night is caused by a Spinning Earth

THE CONTINENTS HAVE MOVED

WE HAVE EVOLVED FROM OTHER ANIMALS

THE EARTH IS 5 BILLION YEARS OLD

DISEASES ARE CAUSED BY TINY LIVING ORGANISMS

THE UNIVERSE STARTED WITH A BIG BANG

TIME SLOWS DOWN WHEN YOU TRAVEL AT THE SPEED OF LIGHT

The Role of Argument in Science

A NARRATIVE FOR SCIENCE?

- 1. THERE ARE PLURAL METHODS AND TYPES OF REASONING WHICH REQUIRE A DIVERSE SET OF PROCEDURAL, EPISTEMIC AND ONTIC ENTITIES
- 2. OBJECTIVITY IS MAINTAINED BY PEER REVIEW AND REPLICATION
- 3. SCIENTISTS CAN MAKE MISTAKES BUT FRAUD IS RARE
- 4. SCIENCE IS ABOUT CREATING MODELS OF REALITY. THEY ARE NOT INFALLIBLE.
- 5. SCIENTIFIC BELIEFS ARE BASED ON A COMMITMENT TO EVIDENCE
- 6. THE CROWNING GLORY OF SCIENCE IS SCIENTIFIC THEORIES.

Good Attempts

JOHN OLIVER SCIENCE STUDIES

WHAT MAKES SCIENCE TRUE?